Preprocessing of tandem mass spectra using machine learning methods

نویسنده

  • Jiarui Ding
چکیده

Protein identification has been more helpful than before in the diagnosis and treatment of many diseases, such as cancer, heart disease and HIV. Tandem mass spectrometry is a powerful tool for protein identification. In a typical experiment, proteins are broken into small amino acid oligomers called peptides. By determining the amino acid sequence of several peptides of a protein, its whole amino acid sequence can be inferred. Therefore, peptide identification is the first step and a central issue for protein identification. Tandem mass spectrometers can produce a large number of tandem mass spectra which are used for peptide identification. Two issues should be addressed to improve the performance of current peptide identification algorithms. Firstly, nearly all spectra are noise-contaminated. As a result, the accuracy of peptide identification algorithms may suffer from the noise in spectra. Secondly, the majority of spectra are not identifiable because they are of too poor quality. Therefore, much time is wasted attempting to identify these unidentifiable spectra. The goal of this research is to design spectrum pre-processing algorithms to both speedup and improve the reliability of peptide identification from tandem mass spectra. Firstly, as a tandem mass spectrum is a one dimensional signal consisting of dozens to hundreds of peaks, and majority of peaks are noisy peaks, a spectrum denoising algorithm is proposed to remove most noisy peaks of spectra. Experimental results show that our denoising algorithm can remove about 69% of peaks which are potential noisy peaks among a spectrum. At the same time, the number of spectra that can be identified by Mascot algorithm increases by 31% and 14% for two tandem mass spectrum datasets. Next, a two-stage recursive feature elimination based on support vector machines (SV M -RFE) and a sparse logistic regression method are proposed to select the most relevant features to describe the quality of tandem mass spectra. Our methods can effectively select the most relevant features

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolite identification and molecular fingerprint prediction through machine learning

MOTIVATION Metabolite identification from tandem mass spectra is an important problem in metabolomics, underpinning subsequent metabolic modelling and network analysis. Yet, currently this task requires matching the observed spectrum against a database of reference spectra originating from similar equipment and closely matching operating parameters, a condition that is rarely satisfied in publi...

متن کامل

Metabolite identification through multiple kernel learning on fragmentation trees

MOTIVATION Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. ...

متن کامل

Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning.

At present, there is much variability between MALDI-TOF MS methodology for the characterization of bacteria through differences in e.g., sample preparation methods, matrix solutions, organic solvents, acquisition methods and data analysis methods. After evaluation of the existing methods, a standard protocol was developed to generate MALDI-TOF mass spectra obtained from a collection of referenc...

متن کامل

Machine learning methods for predictive proteomics

The search for predictive biomarkers of disease from high-throughput mass spectrometry (MS) data requires a complex analysis path. Preprocessing and machine-learning modules are pipelined, starting from raw spectra, to set up a predictive classifier based on a shortlist of candidate features. As a machine-learning problem, proteomic profiling on MS data needs caution like the microarray case. T...

متن کامل

A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores.

Shotgun tandem mass spectrometry-based peptide sequencing using programs such as SEQUEST allows high-throughput identification of peptides, which in turn allows the identification of corresponding proteins. We have applied a machine learning algorithm, called the support vector machine, to discriminate between correctly and incorrectly identified peptides using SEQUEST output. Each peptide was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009